Synthesis, Structures, Magnetic Properties, and Absorption Spectra of the Alkaline Oxocobaltates(II): Li₆CoO₄, Na₄CoO₃, and Na₁₀Co₄O₉

Angela Möller

Institut für Anorganische Chemie der Universität zu Köln, Greinstrasse 6, D-50939 Köln, Germany

Received April 17, 1998. Revised Manuscript Received August 13, 1998

The synthesis of Li_6CoO_4 , Na_4CoO_3 , and $Na_{10}Co_4O_9$ and the refinements of the crystal structures of the two sodium compounds are reported. The physical properties of these materials have been studied by measuring the absorption spectra and the susceptibility. An interpretation of these data is presented for the tetrahedral $[CoO_4]^{6-}$ and trigonal planar $[CoO_3]^{4-}$ complexes in terms of the angular-overlap model.

Introduction

There has been considerable interest in, for example, "Manganese Blue", i.e., compounds that contain Mn⁵⁺ in tetrahedral coordination with oxygen, as a material for industrial purposes. Reinen and co-workers also extensively studied the spectroscopic properties of related compounds.¹ Their results include studies of how doped materials in different hosts effect the site symmetry of the transition metal cation and allow access to "tuneable" shifts in the absorption bands. Egyptian Blue, CaCuSi₄O₁₀, used in the old Egyptian culture for dying purposes, has been studied in terms of the characterization of the square planar Cu²⁺ connected by oxygen² and compared to K₆CuSi₂O₈ and A₄CuSi₂O₇ (A = Rb, Cs) recently.³ The change of the counterions from Ca²⁺ to alkaline cations has again some influence on the copper site.

The main aspect of this study is to present the cobalt compounds Li₆CoO₄, Na₄CoO₃, and Na₁₀Co₄O₉ and their properties in order to make experimental data accessible for future applications.

Alkaline-rich oxometalates have been of considerable interest in the past. The synthesis of these highly moisture sensitive compounds requires special precautions, so their properties were excluded from further investigation. Therefore, knowledge is still limited to the characterization of new phases and the determination of their crystal structures. In the past, ligands such as O^{2-} were considered to stabilize higher oxidation states, as for example in KMnO₄, K₂FeO₄, or K₃FeO₄ with the transition metal ion in a tetrahedral coordination.⁴ More recent investigations clearly show that

under certain conditions the lower valent oxometalates with alkaline counterions can be obtained. However, these "low"-valent oxometalates exhibit unusually low coordination numbers (CN) for the transition metal ion. The crystal data of these compounds reveal a decreasing coordination of the transition metal ion, for example CN = 3 for Co^{2+} and Fe^{2+} or CN = 2 for Ni^{2+} , Fe^+ , Co^+ , and Ni⁺, respectively.^{5,6} The properties of K₂NiO₂, KNa₂-NiO₂, and K₃NiO₂ have been investigated.^{7,8} Most of these compounds do show a ratio of alkaline to transition metal of 3:1. Therefore, these compounds can be considered as alkaline-rich materials with the transition metalate complexes "diluted" in the solid state of A₂O. Proceeding in this way, the structure of Li₆CoO₄ ⁹ and the refined one of Na₄CoO₃ fit the model. Both compounds have been studied in terms of their magnetic and spectroscopic properties. The magnetic behavior of $Na_{10}Co_4O_9$ is compared to Na_4CoO_3 in the further discussion.

Experimental Section

 Li_6CoO_4 , Na_4CoO_3 , and $Na_{10}Co_4O_9$ can be obtained by reaction of Li₂O (Aldrich, 98%) or Na₂O [reaction of NaOH (Merck, p.a.) with Na (Riedel-de Häen, 98%)], respectively, with CoO [from thermal decomposition of the carbonate] in sealed Ag containers at 450-550 °C. To synthesize pure highly crystalline phases it is necessary to use a small excess of the alkaline oxide. All reactions were carried out in an Ar atmosphere for handling these compounds as well as sealing them to prevent them from reacting with air and moisture. Furthermore, the Ag containers were enclosed under inert gas in glass ampules.

Another route to prepare these compounds is via redox reactions. For example, one may oxidize Co metal with Na₂O₂

⁽¹⁾ Reinen, D.; Kesper, U.; Atanasov, A.; Roos, J. Inorg. Chem. 1995, 34, 184. Lachwa, H.; Reinen, D. *Inorg. Chem.* **1989**, *28*, 1044. Wagner, B.; Reinen, D.; Brunold, Th. C.; Güdel, H. U. *Inorg. Chem.* **1995**, *34*, 1934.

Ford, R. J.; Hitchman, M. A. Inorg. Chim. Acta 1979, 33, L167.
 Möller, A. Z. Anorg. Allg. Chem. 1997, 623, 1685. Möller, A. Z.

⁽a) HOHEL, R. Z. AHOFF, AUG. CHEM. 1997, 623, 1685. Möller, A. Z. ANOFF, Allg. Chem. 1998, 624, 1085.
(4) Hoppe, R.; Mader, K. Z. Anorg. Allg. Chem. 1990, 586, 115.
Hoppe, M. L., Schlemper, E. O.; Murman, R. K. Acta Crystallogr. 1982, B38, 2237.

⁽⁵⁾ Möller, A.; Hoppe, R. Z. Anorg. Allg. Chem. 1994, 620, 581.
Hoppe, R.; Birx, J. Z. Anorg. Allg. Chem. 1988, 557, 171. Bernhardt,
F.; Hoppe, R. Z. Anorg. Allg. Chem. 1992, 618, 63.
(6) Burow, W.; Birx, J.; Bernhardt, F.; Hoppe, R. Z. Anorg. Allg. Chem. 1993, 619, 923. Bernhardt, F.; Hoppe, R. Z. Anorg. Allg. Chem.

⁽⁷⁾ Hitchman, M. A.; Stratemeier, H.; Hoppe, R. *Inorg. Chem.* **1988**,

^{27 2506}

⁽⁸⁾ Möller, A.; Hitchman, M. A.; Krausz, E.; Hoppe, R. Inorg. Chem. 1995, *34*, 2684.

⁽⁹⁾ Luge, R.; Hoppe, R. Z. Anorg. Allg. Chem. 1986, 534, 61.

in the presence of Na₂O, or one may use CuO as an oxidizing agent; metallic copper is then formed. Both reactions occur at approximately 300 °C (DSC, Netzsch STA 409, 10 K/min, closed Ag containers, Ar atmosphere) to form CoO in the first step and Cu (XRD, Stoe, Ag crucible, N₂ atmosphere). The formation of the ternary phases takes place at higher temperatures.

The purity of the samples was checked by X-ray diffractometry (Guinier technique).

The crystal structures of Na₄CoO₃ and Na₁₀Co₄O₉ were redetermined from intensity data collected on a IPDS (Stoe) and AED2 four-circle diffractometer (Siemens), respectively.

Magnetic measurements were carried out with a SQUID, Quantum Design, and Faraday balance, respectively. The data were corrected for diamagnetic contributions.¹⁰ Roomtemperature absorption spectra were recorded with a Cary 05E (Varian) spectrometer. Unfortunately, the single crystals were too small and too dark in color so that no single-crystal measurement could be carried out. Therefore, only powder samples of ground crystals were used. IR spectra were obtained on a Nicolet 5PC spectrometer.

Results and Discussion

Crystal Structures. Li₆CoO₄ has been previously characterized by Hoppe and Luge.⁹ The structure can be described as a derivative of the Li₂O type of structure with one-eighth of the tetrahedral sites unoccupied according to $4Li_2O \equiv Li_8O_4 \rightarrow Li_6Co\Box O_4$. The Co-O distances are 199.6 pm and the O-Co-O angles 104.5° $(4\times)$ and 119.9° $(2\times)$, respectively. Therefore, the isolated $[CoO_4]^{6-}$ complex is not of T_d symmetry but has the point symmetry D_{2d} . Shortest interatomic Co–Co distances are 465.4 pm. Li_6CoO_4 crystalizes in the space group $P4_2/nmc$ and the lattice constants were refined within this work to a = 654.40(5) pm and c = 465.14(5)pm, in good agreement with the literature data.⁹

Previous structure determinations of Na₄CoO₃ and $Na_{10}Co_4O_9$ reveal some controversy with respect to differences in Co-O distances and O-Co-O angles.^{11,12} Also, the space group Cc for Na₄CoO₃ led to some discussion. While the structure determination was first carried out in P1¹³ and almost at the same time in Cc,¹¹ there was a comment referring to the corrected space group, Cc, later on.¹⁴ An investigation related to the acentric space group, Cc, was to look at the SHG effect (second harmonic generation), which could be observed using a powder sample of Na₄CoO₃. Therefore, a redetermination of the crystal structure seemed to be advisable as these data were also used for the input to carry out the calculations in terms of the AOM (angularoverlap model) with respect to the measured magnetic and spectroscopic properties. Results of the crystal structure redetermination for Na₄CoO₃ and Na₁₀Co₄O₉ are presented in Tables 1-4. In comparison with previous results, it could be confirmed that only one crystallographic site for Co^{2+} is present in Na₄CoO₃ (*Cc*). A better refinement in this space group also gave more consistent interatomic distances and angles for the $[CoO_3]^{4-}$ complex (Table 5). Specially the latter ones

- (11) Barker, M. G.; Fairhall, G. A. J. Chem. Research (S) 1979, 371. (12) Burow, W.; Hoppe, R. (a) Z. Anorg. Allg. Chem. 1980, 467, 158.
 (b) Angew. Chem. 1979, 91, 71.
- (13) Burow, W.; Hoppe, R. Z. Anorg. Allg. Chem. **1979**, 459, 59. Burow, W.; Hoppe, R. Angew. Chem. **1979**, 91, 577.
- (14) Baur, W. H.; Kassner, D. Acta Crystallogr. 1992, B48, 356.

Table 1. Crystallographic Data for Na₄CoO₃

space group, *Cc* (No. 9); crystal system, monoclinic, Z = 4a = 1103.7(2) pm, b = 576.42(7) pm, c = 814.9(1) pm, $\beta = 114.06(1)^{\circ}$ IPDS data: -14 < h < 14, -7 < k < 7, -10 < l < 10, $2\Theta_{\text{max}} = 56.05^{\circ}$ 1050 unique reflections of 4483 measured $\lambda = 71.069$ pm, K α (Mo), $\mu = 3.69$ mm⁻¹, F(000) = 380

 $R_{\text{int}} = 3.07$ %, $R_1 = 2.36$ % for 1004 $F_0 > 4\sigma(F_0)$, 2.52% for all data $wR_2 = 6.02\%$, GOOF = 1.097, w = 0.042, refinement¹⁵

powder data: a = 1103.71(7) pm, b = 576.39(5) pm,

 $c = 814.81(5) \text{ pm}, \beta = 114.058(4)^{\circ}$

Table 2. Atomic Parameters and Coefficients of the Equivalent Temperature Factors¹⁶ (in pm²) for Na₄CoO₃

atom	site	X	У	Ζ	$U_{ m eq}$
Со	4a	0.85544(3)	0.15091(6)	0.68630(4)	111(1)
Na1	4a	0.9891(2)	-0.3400(2)	0.8835(3)	221(4)
Na2	4a	0.7684(3)	-0.3314(3)	0.4765(3)	234(4)
Na3	4a	0.6844(2)	-0.2115(2)	0.7867(2)	170(3)
Na4	4a	0.0850(1)	0.1585(2)	0.0651(2)	144(3)
01	4a	0.6890(2)	0.0033(5)	0.5456(3)	134(5)
O2	4a	0.0154(3)	0.0088(4)	0.7680(4)	150(6)
O3	4a	0.8104(2)	0.4487(4)	0.7332(3)	128(5)

Table 3. Crystallographic Data for Na₁₀Co₄O₉

space group, P-1 (No. 2); Z = 2a = 836.3(2) pm, b = 846.8(2) pm, c = 1137.2(2) pm

 $\alpha = 86.552(9)^{\circ}, \beta = 70.26(1)^{\circ}, \gamma = 61.260(9)^{\circ}$

four-circle-diffractometer data: $-9 < h < 6, -9 < k < 9, -12 < l < 12; 2\Theta_{max} = 45.07^{\circ}$

1724 unique reflections of 3556 measured

 $\lambda = 71.069$ pm, Ka(Mo), $\mu = 5.09$ mm⁻¹, F(000) = 580

 $R_{\rm int} = 3.17\%$, $R_1 = 3.41\%$ for 1063 $F_0 > 4\sigma(F_0)$, 7.91% for all data

 $wR_2 = 8.19\%$, GOOF = 0.985, w = 0.0302, refinement¹⁵

powder data: *a* = 835.6(2) pm, *b* = 846.5(2) pm, *c* = 1142.6(3) pm $\hat{\alpha} = 86.73(2)^{\circ}, \, \beta = 70.15(2)^{\circ}, \, \gamma = 61.23(2)^{\circ}$

Table 4. Atomic parameters and Coefficients of the Equivaltent Temperature Factors¹⁶ (in pm²) for Na10C04O9

atom	X	У	Z	$U_{ m eq}$
Co1	0.0639(2)	0.0322(2)	0.6431(1)	164(3)
Co2	-0.4239(2)	0.7536(2)	0.8509(1)	174(3)
Co3	-0.7079(2)	0.1865(2)	0.8579(1)	163(3)
Co4	-0.2406(2)	0.4609(2)	0.6500(1)	176(3)
Na1	0.3476(5)	-0.4200(5)	0.6268(3)	239(9)
Na2	-0.1420(5)	0.3257(5)	0.8834(3)	243(9)
Na3	0.4985(5)	-0.1157(5)	0.6076(3)	215(8)
Na4	0.0063(4)	0.6311(5)	0.8561(3)	204(8)
Na5	0.1543(5)	-0.1132(5)	0.8864(3)	217(8)
Na6	0.1708(5)	0.3431(5)	0.6299(3)	219(8)
Na7	-0.5241(4)	0.4250(5)	0.8783(3)	211(8)
Na8	0.3735(5)	-0.1637(5)	0.3640(3)	253(9)
Na9	0.1016(5)	0.2247(5)	0.3803(3)	262(9)
Na10	-0.2620(5)	0.0258(5)	0.8841(3)	230(8)
01	-0.4499(7)	0.9691(7)	0.7884(5)	214(14)
02	-0.1977(7)	0.2428(7)	0.7144(5)	224(14)
O3	0.2509(7)	0.0667(8)	0.5272(5)	224(15)
04	0.0617(7)	-0.1576(7)	0.7247(5)	202(13)
O5	-0.6005(7)	0.7084(7)	0.9658(5)	179(13)
06	-0.6915(7)	0.3720(7)	0.7736(5)	216(13)
07	-0.9080(7)	0.1674(7)	0.9721(4)	165(13)
08	-0.1625(7)	0.5653(7)	0.7528(5)	176(12)
09	-0.3497(7)	0.5695(7)	0.5386(5)	214(13)

were important for the calculation and assignment of the spectrum. For example, interatomic distances of d(Co-O) = 172, 187, and 205 pm were given in the literature.¹¹ In the case of Na₁₀Co₄O₉, the previous obtained results could be confirmed.^{11,12b}

The main features of the structures are shown in Figures 1 and 2. Isolated $[CoO_3]^{4-}$ complexes are present in Na₄CoO₃. The structure can also be described as a member of the (distorted) Li₂O type of

⁽¹⁰⁾ Selwood, P. W. Magnetochemistry; Interscience: New York, 1956.

Figure 1. (a) Crystal structure of Na₄CoO₃. (b) Part of the structure of Na₄CoO₃ illustrating the $[CoO_3]^{4-}$ complex (thermal vibration ellipsoids of 50% probability) with respect to the crystal coordinates (*a*, *b*, *c*) and the axis (*x*, *y*, and *z*, *z* is perpendicular to the plane defined by *x* and *y*) used for the assignment of the spectroscopic data.

Table 5. Selected Interatomic Distances (in pm) and
Angles (in grd) for Na4CoO3

Co-O2	180.9(3)	O3-Co-O2	129.9(1)	Na3-01	234.0(3)
Co-O3	186.9(2)	O1-Co-O2	124.8(1)	Na3-01	241.0 (3)
Co-O1	192.3(2)	O1-Co-O3	105.0(1)	Na3-02	242.2(3)
Na1-03	221.4(3)	01-Na1-03	122.0(1)	Na3-03	254.1(3)
Na1-01	226.3(3)	02-Na1-03	119.3(1)	Na4-02	230.0(3)
Na1-O2	228.8(3)	02-Na1-01	110.4(1)	Na4-01	230.0 (3)
Na2-01	228.2(4)			Na4-03	238.1(3)
Na2-O3	231.4(3)			Na4-02	238.3(3)
Na2-03	232.5(3)				
Na2-02	280.3(4)				

structure with partially empty cation and anion sites according to $[Na_3\Box_3(NaCo)]O_3\Box$. One O^{2-} site is unoccupied, so the coordination number of $Na(1)^+$ and Co^{2+} is reduced from four (tetrahedral) to three (distorted trigonal planar); for interatomic distances and angles, see Table 5. Co^{2+} is located about 3 pm out of the plane defined by the three coordinating oxygen atoms. Shortest Co–Co interatomic distances are about 443 pm, forming zigzag chains parallel to [001].

A special feature of the structure of $Na_{10}Co_4O_9$ is that the $[CoO_3]$ units are connected via corners to yield $[Co_4O_9]^{10^-}$ tetramers (Figure 2); for interatomic distances and angles, see Table 6. The mean interatomic Co-Co distance within the tetramer is 325 pm and it is 400 pm to Co belonging to neighboring tetramers, so that if one only accounts for these distances, a layer results, neglecting the next sphere with Co-Co distances of 480 pm. Na-O distances are observed within

Figure 2. (a) Crystal structure of $Na_{10}Co_4O_9$. (b) The tetramer unit $[Co_4O_9]^{10-}$ in $Na_{10}Co_4O_9$ (thermal vibration ellipsoids of 50% probability).

Figure 3. Absorption spectrum of Li₆CoO₄ with assigned calculated transitions in T_d (⁴A₂ ground state) and D_{2d} (⁴B₁ ground state). The unlabeled ones represent the calculated spin-forbidden transitions in D_{2d} . The insert shows the [CoO₄]^{6–} complex in Li₆CoO₄ with interatomic distances and angles.

Table 6. Selected Interatomic Distances (in pm) and Angles (in grd) for Na₁₀Co₄O₉

		(a) 101 11a10e0409	
Co1-O3	180.8(5)	O2-Co1-O4	107.5(2)
Co1-O4	181.2(5)	O4-Co1-O3	134.4(3)
Co1-O2	196.2(5)	O2-Co1-O3	117.9(2)
Co2-O5	179.3(5)	O8-Co2-O1	106.2(2)
Co2-O1	185.7(5)	O1-Co2-O5	130.1(2)
Co2-O8	194.5(5)	O8-Co2-O5	123.5(2)
Co3-O7	181.0(5)	O1-Co3-O6	106.7(2)
Co3-O6	182.9(5)	O6-Co3-O7	133.3(2)
Co3-O1	196.8(5)	O1-Co3-O7	119.8(2)
Co4-O9	176.6(5)	O8-Co4-O2	102.1(2)
Co4-O2	185.9(5)	O2-Co4-O9	131.7(2)
Co4-O8	194.1(5)	O8-Co4-O9	125.8(2)

the range 230–248 pm for Na1 to Na8 (CN = 4). Na9 has three distances to oxygen atoms between 235 and 240 pm and a longer one of 262 pm. For Na10, a coordination of 4 + 1 is observed with Na10–O distances of 241–253 pm and one of 268 pm.

Spectroscopic Investigation of Li₆CoO₄. The absorption spectrum of Li₆CoO₄ shows two broad bands in the visible and the near-infrared region centered at \approx 15 800 and \approx 6500 cm⁻¹, respectively (Figure 3). These are the two spin-allowed transitions for a d⁷ ion in a

Table 7. AOM Parameters (in cm⁻¹) for Li₆CoO₄ and Na₄CoO₃

	Li ₆ CoO ₄	Na ₄ CoO ₃
В	685	585
С	2750	2260
ξ	320	300
k	0.71	0.70
$e_{\sigma}(O)$	6400	(D_{3h}) 7100
		$(C_{2v}; C_s)$ 7200 (O2), 7000 (O1, O3)
$e_{\pi}(O)$	2400	(D_{3h}) 1600
		(<i>C</i> _{2<i>v</i>} ; <i>C</i> _s) 1700 (O2), 1500 (O1, O3)

Table 8. Observed and Calculated Transition Energies (in cm⁻¹) for Li₆CoO₄ and Na₄CoO₃

Li_6CoO_4			Na_4CoO_3			
observed (approx)	(D _{2d})	calcd	observed (approx)	(C _s)	calcd	
5300	${}^{4}B_{2}$	5290		⁴ A''	2370	
6500	$^{4}A_{2}$	6475	5000	$^{4}A'$	4860	
7200	${}^{4}E$	7100	5750	$^{4}A'$	5710	
15250	$^{4}\mathrm{E}$	15290	7450	$^{4}A^{\prime\prime}$	7485	
16900	$^{4}A_{2}$	16830	8100	$^{4}A'$	8075	
			11050	$^{4}A^{\prime\prime}$	11025	
			13000	${}^{4}A'$	12905	
			14600	$^{4}A^{\prime\prime}$	14750	

tetrahedral coordination from the ⁴A₂(F) ground state to ${}^{4}T_{1}$ of the P and the F term, respectively. The transition to ${}^{4}T_{2}(F)$ would be located at about 4000 cm⁻¹, almost in the MIR region of the spectrum, and could not be measured completely due to the splitting by reduced symmetry. Figure 3 shows the spectrum and assignment of these spin-allowed transitions from the ${}^{4}B_{1}(F)$ ground state for D_{2d} , with the tetrahedral parent terms also given. The location of the assigned bands results from calculations using the AOM (CAMMAG¹⁷) for T_d and D_{2d} symmetry, respectively. Tables 7 and 8 give the parameters used for the calculations and the observed and calculated transition energies, respectively. Apart from that, the spectrum reveals considerable structure that can be derived from intensitystealing processes by spin-forbidden transitions and possibly by vibrational fine structure as well. These features will be subject of further investigations.

The metal-ligand interaction can be described using the AOM relating to bonding in transition metal complexes.²⁴ The d-orbital energies may be expressed in terms of σ - and π -interactions, represented as antibonding parameters e_{σ} and e_{π} .

Figure 4. Absorption spectrum of Na₄CoO₃ with assigned calculated transitions in D_{3h} (⁴A₂' ground state), C_{2v} (⁴B₂ ground state) and using the crystal data input of distorted reduced symmetry C_s (⁴A" ground state) (bold, spin-allowed transitions; the others represent the calculated spin-forbidden ones).

To compare these results for the tetrahedral complex in Li₆CoO₄ with octahedral complexes, one can roughly assume the simple relation $\Delta_t = -4/9\Delta_0$ with $10D_0 =$ $\Delta_0 = 3e_\sigma - 4e_{\pi}$.^{20,24} That gives in this case for $[\text{CoO}_4]^{6-}$ $\Delta_t = -4270 \text{ cm}^{-1}$ and $\Delta_0 = 9600 \text{ cm}^{-1}$ (obtained with the e_{σ} and e_{π} values given in Table 7), respectively. For $[Co(H_2O)_6]^{2+} \Delta_0$ is found to be 9300 cm⁻¹, ¹⁸ and for NiO, Δ_0 equals 8900 cm^{-1.19} The M–O distances are considerably longer with $d(Co-OH_2) = 215$ pm and d(Ni-O)= 210 pm compared to d(Co-O) = 199.6 pm for Li₆CoO₄. Δ_0 tends to increase as the M–O distance shortens in a way related to the change in the bonding parameters, e_{σ} and e_{π} , by the power of 5–6 of the bond length.²⁰ This might account for the differences in Δ_0 . As in Li₆CoO₄, Co²⁺ is tetrahedrally coordinated by oxygen; it is of some interest to also compare Δ_t with other compounds in such a coordination, which is difficult as there are almost no spectroscopic data of Co²⁺ coordinated by four oxygen available. In conclusion, one would roughly expect Δ_t to be \approx -4100 cm⁻¹ for the oxo complex, which is in good agreement with the calculated data derived from the above-mentioned equations for the given octahedral examples and the data of the CoN_4 T_d chromophore.²³ Recently, Bronger et al.²¹ published magnetic data for Na₆CoS₄, K₆CoS₄, and Na₆CoSe₄ and referred to $\Delta_t = -2880 \text{ cm}^{-1}$ for Na₆CoS₄, obtained from spectroscopic investigations. This is even lower than observed for $[CoCl_4]^{2-}$ ($\Delta_t = -3200 \text{ cm}^{-1}$),¹⁸ but in agreement with the spectrochemical series.

Spectroscopic Investigation of Na₄CoO₃ and Na₁₀Co₄O₉. The absorption spectrum of Na₄CoO₃ is shown in Figure 4. The assignment was made according to the one-electron sequence of d-orbitals in D_{3h} : $d_{x^2-y^2}$, $d_{xy} \gg d_{z^2} > d_{xz}$, d_{yz} (see Figure 1b). Thereafter the symmetry was reduced to $C_{2\nu}$, which is close to the true site symmetry for Co^{2+} in the compound, and finally, the structural data (atomic parameters and lattice constants, Table 2) according to the C_s point symmetry were used for the input.

Changing to $C_{2\nu}$, and paying tribute to the different Co–O distances in reducing the e_{α} and e_{π} parameters for the longer spacings [average distance (Co-O1 and

⁽¹⁵⁾ Sheldrick, G. M. SHELXS-86, University of Göttingen: Göttingen, Germany, 1986. Sheldrick, G. M. SHELXL-93, University of Göttingen: Göttingen, Germany, 1993.

⁽¹⁶⁾ Fischer, R. X.; Tillmanns, E. Acta Crystallogr. 1988, C44, 775. (17) Cruse, D. A.; Davis, J. E.; Gerloch, M.; Harding, J. H.; Mackey, D. J.; McMeecking, R. F. CAMMAG, a FORTRAN computing package;

University Chemical Laboratory: Cambridge, England 1979. (18) Figgis, B. N. Introduction to Ligand Fields; Interscience: New

York, 1967.

⁽¹⁹⁾ Drickamer, H. G. J. Chem. Phys. 1967, 47, 1880, Drickamer, H. G.; Frank, C. W. Electronic Transitions and High-Pressure Chemistry and Physics of Solids; Chapman-Hall: London, 1972.

⁽²⁰⁾ Bencini, A.; Benelli, C.; Gatteschi, D. Coord. Chem. Rev. 1984, 60, 131. Smith, D. W. J. Chem. Phys. **1969**, 50, 2784. Bermejo, M.; Pueyo, L. J. Chem. Phys. **1983**, 78, 854.

⁽²¹⁾ Bronger, W.; Bomba, C.; Koelman, W. Z. Anorg. Allg. Chem. 1995, 621, 409.

⁽²²⁾ Smith, D. W. Inorg. Chim. Acta 1977, 22, 107. Schäffer, C. E. (22) Shifti, D. W. Ind.g. Chan. Lett. 1995, 240, 581.
(23) Lever, A. B. P. Inorganic Electronic Spectroscopy, 2nd ed.;

Elsevier: New York, 1984.

⁽²⁴⁾ Schäffer, C. E.; Jørgensen, C. K. *Mol. Phys.* **1965**, *9*, 401. Reference 1 Chapters 1, 3 and 9.

Co-O3) and equal angles $\angle O2$ -Co-O1 and $\angle O2$ -Co-O3, respectively], introduces the splitting of the former degenerate E and (A_1, A_2) states. The site symmetry derived from the crystal data is lower, C_s , for which the calculated transitions are as well shown in Figure 4. Here it is assumed that the bonding Co-O1 and Co-O3 can be represented as an average environment, and therefore, the calculation in C_s symmetry accounts not only for the derivation of bond angles (O-Co-O) but also for the slightly aplanar geometry of the complex and the different interatomic distances d(Co-O2) and d(Co-O1, Co-O3), respectively. The e_{π} parameters are regarded to be isotropic and therefore represent average values, although the complex symmetry demands anisotropic interactions. The AOM parameters are included in Table 7.

Many publications have been devoted to the effect of d-s mixing, in particular for Cu^{2+} in square planar coordination, effectively decreasing the energy of the d_{z^2} orbital.^{2,22} Therefore, one should also expect some contribution in this case. Actually, a rather good fit to the experimental spectrum is obtained without taking d-s mixing into account. On the contrary, a further e_{ds} value would bring the ${}^{4}A_{2}'(F)$ and ${}^{4}E''(F)$ (D_{3h}) states closer together, leaving the transition at 11 000 cm⁻¹ in the spectra unassigned, and might even lead to a change of the ground state to ${}^{4}E''(F)$. On the other hand, more states would then contribute to the magnetic properties, yielding much higher μ_{eff} than observed (see below). Therefore, it seems safe to assume that the contribution due to d-s mixing is small.

From IR investigations of Na₄CoO₃, one finds a wide region between 1600 and 4000 cm⁻¹ of unstructured absorption (\approx 40% transmittance loss) and three sharp intense bands at 607, 560, and 470 cm⁻¹. The latter ones are part of further investigations.

Comparing these results with those of others is almost impossible because only spectroscopic investigations of more common coordination geometries of the 3d-transition metal ions is accessible. But relations to fivecoordinate Co^{2+} complexes $(D_{3h})^{23.25}$ can be drawn by removing the contribution of the two axial ligands.

The absorption spectrum of Na₁₀Co₄O₉ revealed only two broad unstructured bands in the visible (\approx 14 000 cm⁻¹) and the near-infrared (\approx 10 000-6000 cm⁻¹, with a shoulder extending to 4000 cm⁻¹). The very broad one in the near-infrared can be looked at as the superimposed spectra of two different [CoO₃] complexes, one with two oxygen atoms connected via corners to neighboring Co²⁺ and the other one with two terminal oxygen atoms. Upon including the dependence of the bonding parameters on the Co–O distance and reducing the π -interaction for the bridging oxygen atoms, fits the observed spectrum quite closely. Because of the poorly resolved spectrum, no further details are presented.

 Na_4CoO_3 is intensely red, like most of the oxometalates of iron, cobalt, and nickel with the transition metal in an environment of the low ("unsaturated") coordination numbers of 2 or 3. $Na_{10}Co_4O_9$ is even darker in color. The more intense bands commencing from 16 000 cm⁻¹ toward higher wavenumbers cannot be described in terms of the AOM and are most probably low-lying

Figure 5. Observed and calculated (AOM parameter set) reciprocal susceptibility (\blacktriangle , ---) and $\mu_{\text{eff}}\mu_{\text{B}}$ (\bullet , -) for Li₆CoO₄.

Figure 6. Observed and calculated (AOM parameter set) reciprocal susceptibility (\blacktriangle , - - -) and μ_{eff}/μ_B (\blacklozenge , -) for Na₄CoO₃.

charge-transfer transitions. This region has to be considered in future studies.

Magnetic Properties of Li₆CoO₄. Hoppe and Luge presented magnetic data of Li₆CoO₄ previously.⁹ They found a much smaller value for μ_{eff} of 4.1 μ_{B} compared to Cs_2CoCl_4 ($\mu_{eff} = 4.7\mu_B$)¹⁸ at 300 K. A reinvestigation of the magnetic behavior was carried out, and within the experimental error, we observed the same value. These measurements were performed on a Faraday magnetometer. The Curie-Weiss law assumed for this data set yields $\Theta = -8$ K, and therefore, antiferromagnetic behavior is present for this compound. The calculation of the magnetic behavior includes corrections for antiferromagnetic interactions and the first- and second-order Zeeman effect (CAMMAG¹⁷). The orbital reduction parameter, k, was set to 0.71, matching the reduction of the Racah parameter, *B*, $(B_0 = 971 \text{ cm}^{-1})^{23}$ as well. The effective spin-orbit coupling parameter, $\xi = 320 \text{ cm}^{-1} (\xi_0 = 515 \text{ cm}^{-1}),^{18} \text{ is used for the input.}$ Figure 5 shows the measured and calculated reciprocal susceptibility and μ_{eff} values for Li₆CoO₄.

In comparison with the results obtained for Na₆CoS₄ ($\mu_{eff} = 4.6\mu_B$),²¹ it is plausible, according to the lower value for Δ_t for the sulfide compound, which means that the first transition energies are found at lower wavenumbers and therefore these states contribute to the magnetic moment of the ground state in a more extended manner. This influence can be estimated from the equation approximately representing the first-order Zeeman effect on the magnetic moment, $\mu_{eff}^{spin-only}$, after corrections for the temperature-independent paramag-

⁽²⁵⁾ Kutoglu, A.; Roesler, A.; Reinen, D. Z. Anorg. Allg. Chem. 1979, 456, 130.

Figure 7. Observed and calculated (Curie–Weiss law) susceptibility for Na_4CoO_3 (\bullet , –) and $Na_{10}Co_4O_9$ (\blacktriangle , --).

netism (TIP) for A_2 terms: $\mu_{eff} = \mu_{eff}^{spin-only}(1-4k^2\lambda_o/|10D_q|)$ with $|10D_q| = |\Delta_t|$ and $\lambda_o = -\xi_o/3$ for Co^{2+} in a tetrahedral environment.^{18} With the knowledge of the spectroscopic data for this compound now, see above, this can be explained as a result of Δ_t being much larger and the effective spin–orbit coupling parameter being smaller for Li_6CoO_4 than in the chloro and the sulfide compound, respectively.

Magnetic Properties of Na₄CoO₃ and Na₁₀Co₄O₁₀. Na₄CoO₃ and Na₁₀Co₄O₉ have both $\mu_{\rm eff}$ values \approx 4.0 $\mu_{\rm B}$ at 300 K and show antiferromagnetic behavior according to the Curie–Weiss law with $\Theta \approx -15$ and -25 K, respectively. Again, the data for Na₄CoO₃ could be fit in the temperature region with the bonding parameters obtained from the interpretation of the spectra, with corrections for antiferromagnetic interactions and inclusion of a somewhat smaller value for k = 0.70 and $\xi = 300$ cm⁻¹ (Figure 6). If one pronounces that the contribution of d–s mixing produces a ⁴E''(F) ground state with the ⁴A₂' within a few hundred wavenumbers, $\mu_{\rm eff}$ is calculated including first and second Zeeman interaction to be ${\approx}4.5\mu_B$. Therefore, the magnetic data provides some support for the above-discussed assignment. Na_{10}Co_4O_9 shows a very similar behavior to Na_4CoO_3 (Figure 7). The low-temperature region is of some interest for more detailed investigations. It appears that apart from the three-dimensional ordering in both compounds, a second effect (shoulder at ${\approx}10$ K) could be present for Na_{10}Co_4O_9, making it an interesting material to study low-dimensional cooperative effects.

Conclusions

Magnetic and spectroscopic properties of Li₆CoO₄ and Na₄CoO₃ are described in terms of the angular-overlap model. Comparing these two compounds, it seems that in terms of bonding the $[CoO_3]^{4-}$ is even more "covalent" than the $[CoO_4]^{6-}$ complex as estimated from the B/B_0 ratio. The derived Racah parameter, B, for Co²⁺ in Li₆CoO₄ is comparable with those reported in the literature for similar ligands (O, N) (\approx 800 cm⁻¹ for octahedral, \approx 750 cm⁻¹ for trigonal bipyramidal, and \approx 700 cm⁻¹ for tetrahedral environments).^{23,25} For the trigonal planar complex in Na₄CoO₃, a much lower B value is found here. The e_{π} value is strongly reduced for the distorted trigonal planar complex. Similar e_{π} and k parameters have been used for the interpretation of square planar complexes.^{2,3}

Acknowledgment. Financial support by the Deutsche Forschungsgemeinschaft, Bonn, is gratefully acknowledged.

Supporting Information Available: Listings of atomic parameters, coefficients of the anisotropic and equivalent temperature factors, and interatomic distances and angles for Na_4CoO_3 and $Na_{10}Co_4O_9$ (6 pages). Ordering information is given on any masthead page.

CM9802907